ME 141
 Engineering Mechanics

Portion 3
Equilibrium

Partha Kumar Das
Lecturer
Department of Mechanical Engineering, BUET http://teacher.buet.ac.bd/parthakdas/

Condition of Equilibrium

$>$ Recall Newton's Second law of Motion

$$
\begin{aligned}
& \sum F=m a \\
& \sum M=I \alpha
\end{aligned}
$$

$>$ If a rigid body has no acceleration (linear and angular), that is either it's velocity(linear and angular) is zero (static) or it is moving with a constant velocity(linear and angular), then,

$$
\sum F=0, \sum M=0
$$

$>$ These two equations are known as the condition of equilibrium.
$>$ If the equations are expanded into their components in axial directions, then,

$$
\Sigma \mathbf{F}=\sum F x \mathbf{i}+\sum F y \mathbf{j}+\sum F z \mathbf{k}=\mathbf{0}
$$

$\sum F x=0$
$\sum F y=0$
$\sum F z=0$
$\sum \mathbf{M}=\sum M x \mathbf{i}+\sum M y \mathbf{j}+\sum M z \mathbf{k}=\mathbf{0}$
$\sum M x=0$
$\sum M y=0$
$\sum M z=0$

Equilibrium in 2D
Reactions at Supports and Connections

Condition of Equilibrium in 2D

Problem 3.1 (Beer Johnston_10 ${ }^{\text {hi }}$ edition_P4.15)

The bracket BCD is hinged at \mathbf{C} and attached to a control cable at \mathbf{B}. For the loading shown, determine (a) the tension in the cable, (b) the reaction at \mathbf{C}.

Ans.: $\mathbf{T x}=1600 \mathrm{~N} \longleftarrow, \mathbf{T y}=1200 \mathrm{~N} \downarrow, T=2 \mathrm{kN} ; \mathbf{C}=2.32 \mathrm{kN} \not \bigwedge_{\downarrow} 46.4^{\circ}$

Problem 3.3 (Beer Johnston_10 ${ }^{\text {ne }}$ edition_P4.21)
Determine the reactions at \mathbf{A} and \mathbf{C} when (a) $\alpha=0^{\circ}$, (b) $\alpha=30^{\circ}$.

A rod $\mathbf{A B}$ hinged at \mathbf{A} and attached at \mathbf{B} to cable BD supports the loads shown. Knowing that $d=200 \mathrm{~mm}$, determine (a) the tension in cable $\mathbf{B D}$, (b) the reaction at \mathbf{A}.

```
Ans.: T = 190.9 N \45', A=142.3 N 18.430
```


Problem 3.4

A slender rod $\mathbf{A B}$, of weight $W=30 \mathrm{~N}$ and length $l=1 \mathrm{~m}$, is attached to blocks \mathbf{A} and \mathbf{B}, which move freely in the guides shown. The blocks are connected by an elastic cord that passes over a pulley at C. (a) Express the tension in the cord at pulley at C. (a) Express the
the moment when $\theta=30^{\circ}$.
Solution:

$$
\begin{aligned}
& \text { Steps: } \\
& \text { 1. Draw the Free Body Diagram of bar AB. Assume tension in the cables are same. } \\
& \text { 2. Apply three conditions of equilibrium, i.e. } \\
& \left.\qquad \underset{\perp}{ \pm} \sum F x=0,+\uparrow \sum F y=0,+\right) \sum M_{A}=0 \\
& \text { 3. Solve the three equations. }
\end{aligned}
$$

Ans.: $T=35.491 \mathrm{~N}$

Problem 3.5 (Beer Johnston_10 ${ }^{\text {th }}$ edition_P4.10)
The maximum allowable value of each of the reactions is 180 N .
Neglecting the weight of the beam, determine the range of the distance d for which the beam is safe

Ans.: $150 \mathrm{~mm} \leq d \leq 400 \mathrm{~mm}$

Equilibrium in 3D
Reactions at Supports and Connections

Equilibrium in 3D

$>$ Recall Newton's Second law of Motion.

$$
\begin{aligned}
& \sum F=m a \\
& \sum M=I \alpha
\end{aligned}
$$

$>$ If a rigid body has no acceleration (linear and angular), that is either it's velocity(linear and angular) is zero (static) or it is moving with a constant velocity(linear and angular), then,

$$
\sum F=0, \sum M=0
$$

$>$ This two equations are known as the condition of equilibrium.
$>$ If the equations are expanded into their components in axial directions, then,

$$
\sum \mathbf{F}=\sum F x \mathbf{i}+\sum F y \mathbf{j}+\sum F z \mathbf{k}=\mathbf{0} \quad \sum \mathbf{M}=\sum M x \mathbf{i}+\sum M y \mathbf{j}+\sum M z \mathbf{k}=\mathbf{0}
$$

Equilibrium in 3D
Reactions at Supports and Connections

Problem 3.6 (Beer Johnston_10 ${ }^{\text {the edition_P4.91) }}$
A $200-\mathrm{mm}$ lever and a $240-\mathrm{mm}$-diameter pulley are welded to the axle BE that is supported by bearings at \mathbf{C} and \mathbf{D}. If a $720-\mathrm{N}$ vertical load is applied at \mathbf{A} when the lever is horizontal, determine (a) the Tension in the cord, (b) the reactions at \mathbf{C} and \mathbf{D}.
Assume that the bearing at \mathbf{D} does not exert any axial thrust.

Ans.: $\quad T=1.2 \mathrm{kN}$,
$\boldsymbol{C}=(0.4 \mathrm{kN}) \mathbf{i}+(1.2 \mathrm{kN}) \mathbf{j}$,
$\boldsymbol{D}=(-1.6 \mathrm{kN}) \mathbf{i}+(-0.48 \mathrm{kN}) \mathbf{j}$
**Solve the problem assuming that the axle has been rotated at an angle 30 clockwise in its bearing and the 720 N load is still vertical.

End of Portion 3

References

> Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.

