Condition of Equilibrium

➤ Recall Newton's Second law of Motion.

$$\sum F = ma$$
$$\sum M = Ia$$

If a rigid body has no acceleration (linear and angular), that is either it's velocity(linear and angular) is zero (static) or it is moving with a constant velocity(linear and angular), then,

 $\Sigma F = 0, \Sigma M = 0$

These two equations are known as the <u>condition of equilibrium</u>.
If the equations are expanded into their components in axial directions, then,

 $\sum \mathbf{F} = \sum Fx\mathbf{i} + \sum Fy\mathbf{j} + \sum Fz\mathbf{k} = \mathbf{0}$ $\sum Fx = 0$ $\sum Fy = 0$ $\sum Fz = 0$

 $\sum \mathbf{M} = \sum M x \mathbf{i} + \sum M y \mathbf{j} + \sum M z \mathbf{k} = \mathbf{0}$ $\sum M x = 0$ $\sum M y = 0$ $\sum M z = 0$

Portion 3 Equilibrium

Partha Kumar Das

Lecturer Department of Mechanical Engineering, BUET http://teacher.buet.ac.bd/parthakdas/

<section-header><section-header>

Equilibrium in 3D

Recall Newton's Second law of Motion.

$$\sum F = ma$$
$$\sum M = I\alpha$$

➢ If a rigid body has no acceleration (linear and angular), that is either it's velocity(linear and angular) is zero (static) or it is moving with a constant velocity(linear and angular), then,

$$\Sigma F = 0, \Sigma M = 0$$

This two equations are known as the <u>condition of equilibrium</u>.
If the equations are expanded into their components in axial directions, then,

 $\sum \mathbf{F} = \sum F x \mathbf{i} + \sum F y \mathbf{j} + \sum F z \mathbf{k} = \mathbf{0} \qquad \sum \mathbf{M} = \sum M x \mathbf{i} + \sum M y \mathbf{j} + \sum M z \mathbf{k} = \mathbf{0}$

References

Vector Mechanics for Engineers: Statics and Dynamics Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.